Bachelor of Science in Physics(STEM)

at EDUCO - Rose-Hulman Institute of Technology USA

Overview

The Department of Physics and Optical Engineering has provided both science and engineering foundation at Rose-Hulman Institute of Technology through its physics and optics engineering programs. Physics is the foundation subject to all engineering and through the study in engineering physics we aim at blending a strong physics component with relevant engineering backgrounds that are usually necessary to work in areas such as semiconductor, optical technologies, biomedical applications, mechanical, electrical, and civil engineering, and polymer and biochemistry. The students will get their traditional undergraduate engineering education that has a broad foundation in mathematics, engineering sciences and technology. This program emphasizes problem solving skills and an understanding of engineering design to address the needs and challenges of the technology age and allow students to take a broad range of engineering careers.

Engineering Physics at Rose-Hulman will provide students with a unique opportunity to learn the foundation concepts of physics and make a concentrated study in micro and nano technology. Engineering physicist will be able to apply both scientific and engineering approaches to a wide variety of problems which otherwise is not possible with any traditional engineering or science degree. Rose-Hulman’s engineering physics graduates will be trained to take up challenging jobs in engineering and development of new technologies or to pursue further studies in engineering or physics.

EP Program Educational Objectives

  • Our graduates will set their career path and advance beyond their entry-level position or progress toward the completion of an advanced degree.
  • Our graduates will contribute to society locally, nationally or globally
  • Our graduates will collaborate within their organization; and be active in research and development in a relevant area of science and technology.
  • Our graduates will continue to develop professionally.
Read More

30

Application Processing Days

Under Graduate

Program Level

Fact & Figures

Full Time On Campus

Study Mode

48

Duration

EDUCO - Rose-Hulman Institute of Technology

Location

Bachelor of Science in Physics(STEM) Assistant Fee

$49479

Tuition Fee

$0

Average Cost of Living

$60

Application Fee

Bachelor of Science in Physics(STEM) Admissions Requirements

  • Minimum Level of Education Required: To be accepted into this program, applicants must have Grade 12 / High School.
plane

Get superfast admissions at top Bachelor of Science in Physics(STEM) institutes in 2024

Benefits of choosing

edmission

Admission’s guaranteed at Top institutes across the world.

Enjoy exclusive application fee waiver’s with Edmissions.

Unlimited FREE Counselling sessions with Edmission’s Experts

Get Tips from industry veterans to crack the IELTS exam in 1 week.

Assistance with scholarships, loans, forex, student accommodation and visa guidance.

Where would you like to study*

Work Permit USA

Optional Practical Training or OPT is a period during which students, who have completed their degrees in the USA, are permitted to work for one year on a student visa by the United States Citizenship and Immigration Services (USCIS). OPT allows students to work for up to 3 years and develop real-world skills to survive in the competitive jobs market.

It is temporary employment for a period of 12-months that is directly related to the major area of study of an F-1 student. Eligible students have the option to apply for OPT employment authorization before completing their academic studies and/or after completing their academic studies.

A student can participate in three types of Optional Practical Training (OPT):

  1. Pre-Completion OPT: This is temporary employment provided to F-1 students before completion of their course of study.
  2. Post-Completion OPT: This is temporary employment available to F-1 students after completing their course of study.
  3. 24 Month STEM Extension: Students enrolled in STEM (Science, Technology, Engineering, and Mathematics) courses can a 24-month extension after their initial Post-Completion OPT authorization. 

Detailed Program and Facts

30

Application Processing Days

Full Time On Campus

Program Intensity

Under Graduate

Program Level

48

Duration

Study Visa

English Test Requirement

6.5

Minimum Overall Score

88.0

Minimum Overall Score

Other Courses by EDUCO - Rose-Hulman Institute of Technology,USA

Natural Sciences & Mathematics

Bachelor of Science in Physics (STEM)

The Department of Physics and Optical Engineering has provided both science and engineering foundation at Rose-Hulman Institute of Technology through its physics and optics engineering programs. Physics is the foundation subject to all engineering and through the study in engineering physics we aim at blending a strong physics component with relevant engineering backgrounds that are usually necessary to work in areas such as semiconductor, optical technologies, biomedical applications, mechanical, electrical, and civil engineering, and polymer and biochemistry. The students will get their traditional undergraduate engineering education that has a broad foundation in mathematics, engineering sciences and technology. This program emphasizes problem solving skills and an understanding of engineering design to address the needs and challenges of the technology age and allow students to take a broad range of engineering careers.

Engineering Physics at Rose-Hulman will provide students with a unique opportunity to learn the foundation concepts of physics and make a concentrated study in micro and nano technology. Engineering physicist will be able to apply both scientific and engineering approaches to a wide variety of problems which otherwise is not possible with any traditional engineering or science degree. Rose-Hulman’s engineering physics graduates will be trained to take up challenging jobs in engineering and development of new technologies or to pursue further studies in engineering or physics.

EP Program Educational Objectives

  • Our graduates will set their career path and advance beyond their entry-level position or progress toward the completion of an advanced degree.
  • Our graduates will contribute to society locally, nationally or globally
  • Our graduates will collaborate within their organization; and be active in research and development in a relevant area of science and technology.
  • Our graduates will continue to develop professionally.

48 month

Duration

$ 50961

Tuition

As has been done since we awarded the nation’s first degree in chemical engineering in 1889, the undergraduate program in chemical engineering undertakes to prepare individuals for careers in the chemical process industries. These include all industries in which chemical and energy changes are an important part of the manufacturing process, such as the petroleum, rubber, plastics, synthetic fiber, pulp and paper, fermentation, soap and detergents, glass, ceramic, photographic and organic and inorganic chemical industries. In view of the dynamic nature of this technology, the course of study stresses fundamental principles rather than technical details. It prepares the student either for advanced study at the graduate level or for immediate entrance into industry. Opportunities in the process industries are found in a variety of activities, including design, development, management, production, research, technical marketing, technical service, or engineering.

Mission: The mission of the Department of Chemical Engineering at Rose-Hulman Institute of Technology is to provide an excellent chemical engineering education through a combination of theory and practice that prepares students for productive professional careers including postgraduate studies.

Program Educational Objectives
Program Educational Objectives are broad statements that describe what graduates are expected to attain within a few years of graduation.

  • Our graduates will attain a promotion and/or responsibilities beyond their entry-level position, or progress toward the completion of an advanced degree.
  • Our graduates will continue to develop professionally.
  • Our graduates will collaborate professionally within or outside of their organizations at a regional, national and/or international leve

48 month

Duration

$ 50961

Tuition

Electrical Engineering (EE) is a professional engineering discipline that deals with the study and application of electricity, electronics, and electromagnetism. Common EE tasks include designing communication systems, energy conversion and power delivery, control systems applications, design of analog and digital systems, and others. Below is a recommended plan of study for EE.

EE Program Educational Objectives

  • Practice excellence in their profession using a systems approach encompassing technological, economic, ethical, environmental, social, and human issues within a changing global environment;
  • Function independently and in leadership positions within multidisciplinary teams;
  • Continue life-long learning by acquiring new knowledge, mastering emerging technologies, and using  appropriate tools and methods;
  • Adapt and independently extend their learning to excel in fields about which they are passionate;
  • Strengthen teams and communities through collaboration, effective communication, public service, and leadership.

EE Student Learning Outcomes

At the time of graduation, students will have demonstrated:

  • An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
  • An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and 2018-2019 Criteria for Accrediting Engineering Programs – Proposed Changes 40 welfare, as well as global, cultural, social, environmental, and economic factors
  • An ability to communicate effectively with a range of audiences
  • An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
  • An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
  • An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
  • An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

48 month

Duration

$ 49479

Tuition

Natural Sciences & Mathematics

Bachelor of Science in Biomathematics(STEM)

An increasing number of problems in the biological sciences are being solved using sophisticated mathematical and computational tools. The biomathematics degree blends mathematics, biology, and computer science in preparation for continued graduate studies and for careers in the quantitative life sciences. The degree's mission is to provide a world class undergraduate education in applied mathematics used in support of the life sciences.

The degree's mission is supported and motivated by these facts:

  • Biological data is being generated with unprecedented precision and in unfathomable volumes.
  • Quantifying biological observations requires mathematical and statistical analysis.
  • The basic principles of complex biological systems support mathematical and computational modeling, which can lead to testable hypotheses and new discoveries.

PROGRAM GOALS AND OBJECTIVES
The biomathematics degree will provide a broad based undergraduate experience that

  • Prepares students with a rigorous education in applied mathematics,
  • Educates students in the fundamental principles of biology,
  • Trains students to work in a computational arena,
  • Introduces students to several of the sister disciplines of computational biology, mathematical biology, bioinformatics, systems biology, and biostatistics,
  • Guides students through an advanced undergraduate research project. The degree will also liberally educate students through the study of the humanities and social sciences. Students of the program will be encouraged to participate in external and internal research programs and industrial internships and/or co-ops.

48 month

Duration

$ 49479

Tuition

Civil engineering is a people-oriented profession that has long been in existence to serve the needs of mankind. It evolved as a formal discipline at the start of the 19th century with the advent of society’s need for increased mobility and convenience. The role of the civil engineer has always been one that deals primarily with public works: the planning, design, and construction of airports, bridges, buildings, and transportation, irrigation, flood control, water supply and waste disposal systems. These civil engineering works not only manage our environment, but are part of the environment itself and, by their very nature, have important social and economic impacts.

The civil engineering curriculum is designed to give the student a sound education in preparation for this role. The first two years include courses that deal with the principles of mathematics, physical and engineering sciences on which engineering concepts are based, as well as courses in humanities and social sciences and introductory courses in engineering and design. The last two years are devoted to developing the necessary technical competence, as well as the ability to apply the knowledge that the student has acquired to the design and synthesis of complex civil engineering projects. Project-based learning is an essential ingredient, and a year-long, client-based capstone design project highlights the senior year.

The entire curriculum is oriented to develop a student’s ability to think critically and logically. Upon graduation the student will be able to adapt this ability to the engineering environment of his or her choice. The curriculum in civil engineering will provide the student with the capacity for professional growth, either by advanced study or as a practicing professional engineer. A student may also use this academic background as a stepping stone to a position in management, administration, law, or some other non-engineering field.

48 month

Duration

$ 49479

Tuition

Computer Engineers (CPE) are electrical engineers that have additional training in the areas of software design and hardware-software integration. Common CPE tasks include writing embedded software for real-time microcontrollers, designing VLSI chips, working with analog sensors, designing mixed signal circuit boards, and designing operating systems. Computer engineers are also well-suited for research in the field of robotics, which relies on using computers together with other electrical systems. Below is a recommended plan of study for CPE.

Computer Engineering graduates shall:

  • Practice excellence in their profession using a systems approach encompassing technological, economic, ethical, environmental, social, and human issues within a changing global environment;
  • Function independently and in leadership positions within multidisciplinary teams;
  • Continue life-long learning by acquiring new knowledge, mastering emerging technologies, and using  appropriate tools and methods;
  • Adapt and independently extend their learning to excel in fields about which they are passionate;
  • Strengthen teams and communities through collaboration, effective communication, public service, and leadership.

CPE Student Learning Outcomes

At the time of graduation, students will have demonstrated:

  • An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
  • An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and 2018-2019 Criteria for Accrediting Engineering Programs – Proposed Changes 40 welfare, as well as global, cultural, social, environmental, and economic factors
  • An ability to communicate effectively with a range of audiences
  • An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
  • An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
  • An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
  • An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

48 month

Duration

$ 49479

Tuition

Civil engineering is a people-oriented profession that has long been in existence to serve the needs of mankind. It evolved as a formal discipline at the start of the 19th century with the advent of society’s need for increased mobility and convenience. The role of the civil engineer has always been one that deals primarily with public works: the planning, design, and construction of airports, bridges, buildings, and transportation, irrigation, flood control, water supply and waste disposal systems. These civil engineering works not only manage our environment, but are part of the environment itself and, by their very nature, have important social and economic impacts.

The civil engineering curriculum is designed to give the student a sound education in preparation for this role. The first two years include courses that deal with the principles of mathematics, physical and engineering sciences on which engineering concepts are based, as well as courses in humanities and social sciences and introductory courses in engineering and design. The last two years are devoted to developing the necessary technical competence, as well as the ability to apply the knowledge that the student has acquired to the design and synthesis of complex civil engineering projects. Project-based learning is an essential ingredient, and a year-long, client-based capstone design project highlights the senior year.

The entire curriculum is oriented to develop a student’s ability to think critically and logically. Upon graduation the student will be able to adapt this ability to the engineering environment of his or her choice. The curriculum in civil engineering will provide the student with the capacity for professional growth, either by advanced study or as a practicing professional engineer. A student may also use this academic background as a stepping stone to a position in management, administration, law, or some other non-engineering field.

48 month

Duration

$ 50961

Tuition

Computer Engineers (CPE) are electrical engineers that have additional training in the areas of software design and hardware-software integration. Common CPE tasks include writing embedded software for real-time microcontrollers, designing VLSI chips, working with analog sensors, designing mixed signal circuit boards, and designing operating systems. Computer engineers are also well-suited for research in the field of robotics, which relies on using computers together with other electrical systems. Below is a recommended plan of study for CPE.

Computer Engineering graduates shall:

  • Practice excellence in their profession using a systems approach encompassing technological, economic, ethical, environmental, social, and human issues within a changing global environment;
  • Function independently and in leadership positions within multidisciplinary teams;
  • Continue life-long learning by acquiring new knowledge, mastering emerging technologies, and using  appropriate tools and methods;
  • Adapt and independently extend their learning to excel in fields about which they are passionate;
  • Strengthen teams and communities through collaboration, effective communication, public service, and leadership.

CPE Student Learning Outcomes

At the time of graduation, students will have demonstrated:

  • An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
  • An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and 2018-2019 Criteria for Accrediting Engineering Programs – Proposed Changes 40 welfare, as well as global, cultural, social, environmental, and economic factors
  • An ability to communicate effectively with a range of audiences
  • An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
  • An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
  • An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
  • An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

48 month

Duration

$ 50961

Tuition

The Computer Science curriculum prepares students for careers in all areas of the computer industry as well as for graduate studies in computer science and computer related fields. Students have also found a computer science major to be excellent preparation for careers in law, medicine, business administration, industrial engineering, biomedical engineering, and other technical and non-technical fields.

Computer science is a rapidly changing discipline. The lifetime of a particular computer system or software package can be very short. The computer science curriculum is designed to prepare students for multiple careers in a rapidly changing environment. The department’s courses emphasize fundamental concepts and techniques that will last longer than present technology.

Computer science majors complete a core of basic computer science courses that includes the study of algorithms, data structures, database concepts, computer architecture, programming languages, operating systems, and software engineering. Majors also complete important courses in closely related fields, e.g., discrete mathematics, digital logic design, and probability and statistics. The major requires students to study all aspects of the science of computing, including hardware, software, and theory.

Computer Science Student Outcomes

  • Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.
  • Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program’s discipline.
  • Communicate effectively in a variety of professional contexts.
  • Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles.
  • Function effectively as a member or leader of a team engaged in activities appropriate to the program’s discipline.
  • Apply computer science theory and software development fundamentals to produce computing-based solutions.

48 month

Duration

$ 50961

Tuition

Natural Sciences & Mathematics

Bachelor of Science in Biology (STEM)

The twenty-first century will see unparalleled advances in the biological sciences. Disciplines such as biology and biomedical engineering are burgeoning and will greatly impact the way we live in the future. The areas of functional genomics and proteomics will drive discoveries in molecular medicine, gene therapy and tissue engineering. Drug discovery will be facilitated by the elucidation of new target molecules and many pharmaceutical compounds will be produced using biological processes. Environmental management, remediation and restoration will also benefit from advances in biology. Biologists will be at the forefront of these advances and will drive the medical, agricultural, environmental and industrial applications of biological sciences.

The biology program will produce biologists with the chemistry, mathematics, and physics background needed to solve biotechnological problems in the coming decades. Those students wishing to strengthen their engineering skills can earn the area minor in biomedical engineering. Other students may choose to pursue a second major in Biochemistry and Molecular Biology. The program will prepare graduates for professional careers in government and industrial research laboratories, and in the biotechnology and health-related industries.

Those wishing to continue their studies in graduate or health professions programs will be exceptionally well qualified to do so.

Biology Learning Objectives

Upon graduation, Rose-Hulman Biology students will be able to

  • Identify questions of interest to the scientific community.
  • Develop and implement a strategy to answer open-ended questions or achieve a goal through scientific investigation or experimentation.
  • Develop evidence-based conclusions through a process of informed evaluation and judgement.
  • Communicate with a range of audiences through a variety of media.
  • Demonstrate integrity with respect to ethical and professional responsibilities.
  • Exhibit growth as a person and professional using appropriate learning strategies.
  • Use examples from molecules to ecosystems to illustrate core concepts of biology.

48 month

Duration

$ 50961

Tuition

View All Courses by EDUCO - Rose-Hulman Institute of Technology, USA

Top Study Abroad Exams

GRE Exam

The Graduate Record Exam (GRE) is a necessary and popular enteryway exam that learners must pass in order to be acc.. Red More

GMAT Exam

The Graduate Management Admission Test (GMAT) is a well-know evaluation for being accepted into MBA programs. Per... Read More

SAT Exam

The SAT is a Standardized evaluation that is necessary for enrolling in underaduate cur... Read More

Popular Universities to Study Abroad

Study in Canada
Study in USA
Study in UK
Study in NZ
Study in India
Study in UAE

Explore Colleges and Courses in USA

Popular States
Popular Cities
Popular Streams

Trending Blog Posts

edmission

Search, Shortlist, Apply and get accepted! It’s that Simple to pursue your dream to Study abroad with Edmissions. Our team of experts provide you the right guidance that helps you to take admission in your dream college in countries like Canada, the USA, the UK

© 2021-2024 Edmissions - All rights reserved.

TALK TO OUR EXPERTS

whatsapp